當前位置:濰坊魯盛水處理設備有限公司>>地埋式生活污水處理設備>> 300t/d地埋式污水處理設備
300t/d地埋式污水處理設備
影響懸浮微生物活性的因素主要有如下幾種:
(1)當懸浮微生物的生物活性較高時,其分泌胞外多聚物的能力較強。這種粘性的胞外多聚物在細菌與載體之間起到了生物粘合劑的作用,使得細菌易于在載體表面附著、固定;
(2)微生物所處的能量水平直接與它們的增長率相關。當盧增加時,懸浮微生物的動能隨之增加。這些能量有助于克服在固定化過程中微生物載體表面間的能壘,使得細菌初始積累速率與懸浮細菌活性成正比;
(3)微生物的表面結構隨著其活性的不同而相應變化。Herben等人研究發現,懸浮細菌活性對細菌在載體表面的附著固定過程有影響,而且,細菌表面的化學組成、官能團的量也隨細菌活性的變化有顯著變化。同時,Wastson等人的研究表明,細胞膜等隨懸浮細菌活性的變化而有顯著變化。細菌表面的這些變化將直接影響微生物在載體表面的附著、固定。因此,通常認為,由懸浮微生物活性變化而引起的細菌表面生理狀態或分子組成的變化是有利于細菌在載體表面附著、固定的;
(4)微生物與載體接觸時間。微生物在載體表面附著、固定是—動態過程。微生物與載體表面接觸后,需要一個相對穩定的環境條件,因此必須保證微生物在載體表面停留一定時間,完成微生物在載體表面的增長過程;
(5)水力停留時間(HRT)。HeUnen等人認為,HRT對能否形成完整的生物膜起著重要的作用。在其他條件確定的情況下,HRT短則有機容積負荷大,當稀釋率大于大生長率時,反應器內載體上能生成完整的生物膜。刊huis等人的試驗證明了這種觀點。在COD負荷為2.5kg/(m3·d),HRT為4h時,載體上幾乎沒有完整的生物膜,而水力停留時間為1h時,在相同的操作時間內幾乎所有的載體上都長有完整的生物膜,且較高的表面COD負荷更易生成較厚的生物膜,即COD負荷越高,生物膜越厚。周平等人也通過試驗證明了較短的水力停留時間有利于載體掛膜;
(6)液相pH值。除了等電點外,細菌表面在不同環境下帶有不同的電荷;液相環境中,pH值的變化將直接影響微生物的表面電荷特性。當液相pH值大于細菌等電點時,細菌表面由于氨基酸的電離作用而顯負電性;當液相pH值小于細菌等電點時,細菌表面顯正電性。細菌表面電性將直接影響細菌在載體表面附著、固定;
(7)水力剪切力。在生物膜形成初期,水力條件是一個非常重要的因素,它直接影響生物膜是否能培養成功。在實際水處理中,水力剪切力的強弱決定了生物膜反應器啟動周期。單從生物膜形成角度分析,弱的水力剪切力有利于細菌在載體表面的附著和固定,但在實際運.
掛膜過程中的影響因素
生物載體掛膜過程中的作用力
生物載體掛膜過程中的作用力直接促成了微生物與載體表面的直接作用,在整個生物膜形成過程中起著至關重要的作用。生物載體在掛膜過程的作用力較為復雜,這里詳細分析與生物載體表面理化特性有關的物理力,如范德華力、靜電作用力、表面張力、水動力外,還有湍流擴散力、表面剪切力、載體運動引起的力等。
300t/d地埋式污水處理設備除磷、脫氮
(1)除磷。
城市廢水中磷的主要來源是糞便、洗滌劑和某些工業廢水,以正磷酸鹽、聚磷酸鹽和有機磷的形式溶解于水中。常用的除磷方法有化學法和生物法。
1)化學法除磷。利用磷酸鹽與鐵鹽、石灰、鋁鹽等反應生成磷酸鐵、磷酸鈣、磷酸鋁等沉淀,將磷從廢水中排除。化學法的特點是磷的去除效率較高,處理結果穩定,污泥在處理和處置過程中不會重新釋放磷造成二次污染,但污泥的產量比較大。
2)生物法除磷。生物法除磷是利用微生物在好氧條件下,對廢水中溶解性磷酸鹽的過量吸收,沉淀分離而除磷。整個處理過程分為厭氧放磷和好氧吸磷兩個階段。
含有過量磷的廢水和含磷活性污泥進人厭氧狀態后,活性污泥中的聚磷商在厭氧狀態下,將體內積聚的聚磷分解為無機磷釋放回廢水中。這就是“厭氧放磷”。聚磷菌在分解聚磷時產生的能量除一部分供自己生存外,其余供聚磷菌吸收廢水中的有機物,并在厭氧發酵產酸菌的作用下轉化成乙酸背,再進一步轉化為PHB(聚自-短基丁酸)儲存于體內。
進入好氧狀態后,聚磷菌將儲存于體內的PHB進行好氧分解,并釋放出大量能量,一部分供自己增殖,另一部分供其吸收廢水中的磷酸鹽,以聚磷的形式積聚于體內。這就是“好氧吸磷”。在此階段,活性污泥不斷增殖。除了一部分含磷活性活泥回流到厭氧池外,其余的作為剩余污泥排出系統,達到除磷的目的。
(2)脫氮。
生活廢水中各種形式的氮占的比例比較恒定:有機氮50%~60%,氨氮40%~50%,亞硝酸鹽與硝酸鹽中的氮占0~5%。它們均來源于人們食物中的蛋白質。脫氮的方法有化學法和生物法兩大類。
1)化學法脫氮。包括氨吸收法和加氯法。
①氨吸收法。先把廢水的pH值調整到10以上,然后在解吸塔內解吸氨
②加氯法。在含氨氮的廢水中加氯。通過適當控制加氯量,可以*除去水中的氨氮。為了減少氯的投加量,此法常與生物硝化聯用,先硝化再除去微量的殘余氨氮。
2)生物法脫氮。生物脫氮是在微生物作用下,將有機氮和氨態氮轉化為氮氣的過程,其中包括硝化和反硝化兩個反應過程。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,儀表網對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。