垃圾滲濾液是垃圾在堆放和填埋過程中由于發酵、雨水沖刷和地表水、地下水浸泡而滲濾出來的污水。來源主要有四個方面:垃圾自身含水、垃圾生化反應產生的水、地下潛水的反滲和大氣降水,其中大氣降水具有集中性、短時性和反復性,占滲濾液總量的大部分。德國VATTEN法登閥門為您提供優質全進口執行器濃水調節閥山東垃圾滲濾液排放。
垃圾滲濾液的水質相當復雜,一般含有高濃度有機物、重金屬鹽、SS及氨氮,垃圾滲濾液不僅污染土壤及地表水源,還會對地下水造成污染,對于垃圾滲濾液中CODCr的去除已有許多研究,一般多采用生物法處理,但是處理效果卻不是很理想,且運行成本相對較高。
全進口執行器濃水調節閥山東垃圾滲濾液排放
垃圾滲濾液的性質隨著填埋場的運行時間的不同而發生變化,這主要是由填埋場中垃圾的穩定化過程所決定的。垃圾填埋場的穩定化過程通常分為五個階段,即初始化調整階段(Initial adjustment phase)、過渡階段(Transition phase)、酸化階段(Acid phase)、甲烷發酵階段(Methane fermentation phase)和成熟階段(Maturation phase)。
原理及特點:蒸發過程所產生的二次蒸汽具有較高的焙值,將其輕易冷凝或排掉是很浪費的。利用的方法有二: 一是如多效蒸發和多級閃蒸那樣直接重復利用; 二是進行壓汽式蒸餾(VC)蒸發濃縮。 即根據任何氣體被壓縮時溫度升高這一特性,將蒸發器中沸騰溶液(或廢水)蒸發出來的二次蒸汽通過壓縮機的絕熱壓縮,提高其壓力、溫度及熱焙后再送回蒸發器的加熱室,作為加熱蒸汽使用,使蒸發器內的溶液繼續蒸發,而其本身則冷凝成水,蒸汽的潛熱得到了反復利用。
就蒸發工藝而言,蒸發過程所消耗的絕大部分熱量都用于提高鹽水的熱焓,使其汽化。而高熱焙的二次蒸汽未加以充分利用,即使多效蒸發過程,末效高熱焙的二次蒸汽也被廢棄。從熱力學觀點來看,即使多效蒸發其熱功效率也相當低。而蒸汽壓縮蒸餾克服了該缺點,也就是只靠壓縮蒸汽所產生的熱而不需要另外供給加熱蒸汽即可進行蒸發操作,同時利用換熱器使待處理的物料充分回收冷凝水和濃縮液的熱量,使熱功效率大大提高。
當蒸汽由大氣壓壓縮至1.2大氣壓時,壓縮機所做之絕熱功為6.8 kW·him3,理論熱功效率達到80%,盡管實際熱功效率較低,但大型蒸汽壓縮蒸餾過程的熱功效率也達到40%左右。由此可見蒸汽壓縮蒸餾鹽水濃縮過程具有其它蒸餾鹽水濃縮方法難以相提并論的技術優點。假定在常壓下蒸發,傳熱溫差為5℃,則對二次蒸汽進行壓縮時理論上只需使其溫度升高5℃左右,對1 ks二次蒸汽而言,壓縮機只提供給蒸汽8-9 kJ的能量,就可使這1 kg蒸汽的汽化熱(2244kJ)得以重新使用。可見其經濟效益是很高的。當然實際系統的節能值并不會這么高,各種損失(如廢水沸點升高、系統散熱、進出的物料的熱量差以及機械損失等)還將大大增加壓縮機的實際耗能量。